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= NASA'’s Earth Observing System (EOS) collects massive, distributed,
heterogeneous data “sets”.

= EOS data sets big and complex.

= Phenomena of interest at different spatial scales, but we don’t know what we
don’t know.

= How can we quantitatively characterize and compare large-scale structure
(i.e. Level 3) in time and space?
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» Assertion: empirical probability distributions derived from the data are signatures of
physical processes.

= Distributions defined on different space-time windows can be compared, and
differences or changes attributed to physical processes.

= Approach:
= partition data on coarse, spatio-temporal grid (monthly five-degree)

= summarize the data in each grid cell by a multivariate distribution estimate, i.e
the output of a clustering algorithm.

= use a well-defined “distance” between probability distributions as a basis for
data mining algorithms.
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Atmospheric Infrared Sounder (AIRS) Data
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AIRS Variables:

Indices  Field

1-11: atmospheric temperature at 11 altitudes

12-22: atmospheric humidity at 11 altitudes

13-32: cloud fraction at 10 altitudes (excludes lowest)
33: land fraction

34: granule type (ascending or descending)

35: quality flag

Challenge: Given 324,000 35-dimensional observations per day since May 2002,
how do we understand and characterize what the data tell us about the
atmosphere? (And yes, the result has to be small enough to fit on my computer!)

Approach: Translate the problem as one of quantitatively characterizing how
empirical distributions of coarse spatio-temporal subsets evolve over space and
time.
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The best source
decoder is the mean
function.

The best channel
code is Huffman.

How to find the best
source encoder?
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Approach
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Approach
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Algorithm: Entropy-constrained Vector Quantization (ECVQ; Chou, Lookabaugh and
Gray, 1989; Braverman et al., 2003).

Result: A set of clusters and corresponding weights for each spatio-temporal grid cell.
Defines a set of discrete probability mass functions (PMF’s).

Statistical model:

Let X be a random vector possessing the empirical distribution of the original
datainagridcell: X ~ f(x).

Let ¥ =q,(X) = B[a(X)] be a deterministic function of X depending on & such that
Y=EXIY): ¥ ~g(y).

2
0= E”X - Y” characterizes how well Y represents X .

h = —E[log2 8(Y)] characterizes the complexity of Y .

“Distance” between X, and X, : A(X,,X,)=min E|X, —X2H2 where 7T satisfies

w(x;,xy)

£(0) = D765 and o) = X a(x,%,) -
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High AIRS Retrieval Yields
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IRRet_Yield TOT_Q_2002.12.25—-2003.01.09—v4.0.2.0_ALL_COM
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Data Mining: An Example
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Cluster Analysis of Grid Cells
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Similar & Proximate Clusters
(Cells 31 and 32, upper right region of interest)
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= The clustered data are a significant compression of raw data
= by a factor of 10 to 100

= Clusters embody distinct, realistic atmospheric states that can be
quantitatively compared.

= Sets of clusters constitute discrete probability distributions with a well-
defined measure of dissimilarity. Use to quantify relationships among
grid cells.

= Apply globally to find unknown relationships between grid cells or
combinations of grid cells.

= These objective ‘top-down’ measures complement traditional ‘bottom-up’
methods used in the atmospheric science.
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